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RESUMO

A crescente necessidade de sistemas de software maiores e mais complexos trouxe
a ideia do reuso de partes de produtos com características (features) comuns em
novos produtos. Linhas de Produto de Software (LPS) têm sido cada vez mais
adotadas para atender essas demandas da indústria, e geralmente são represen-
tadas com modelos de características (feature models) estruturados em árvores.
Contudo, escolher a melhor configuração de features que satisfaça o cliente pode
ser difícil, e este é um problema de otimização chamado de Problema de Configu-
ração de Produtos (PCP). Neste trabalho, nós propomos uma variante do PCP, o
Problema de Configuração de Produtos com Requisitos (PCP-R). Essa nova varia-
ção considera a preferência do cliente em relação aos requisitos de software como
o critério de escolha de features. Apresentamos também um modelo inteiro para
este problema junto a experimentos com instâncias de teste geradas tendo base o
repositório SPLOT. Os resultados mostram que a formulação resolve todo os gru-
pos de instâncias na otimalidade em menos de 0,1 segundos e, cerca de 36% dos
grupos testados, têm mais de 50% dos requisitos de maior preferência como parte
da solução.

Palavras-chave: Linha de Produto de Software. Problema de Configuração de
Produto. Modelo de Característica. Otimização. Modelo Matemático.





ABSTRACT

The growing need for larger and more complex software systems leads to better
support to reuse product parts with commons features in a new product. Software
Product Line (SPL) has been increasingly adopted to attend these demands in the
software industry and it is generally represented by a feature model as a tree struc-
ture. However, choosing the best features configuration that satisfies the client can
be difficult, and this is an optimization problem called Product Configuration Pro-
blem (PCP). In this work, we propose a variant of PCP, the Product Configuration
Problem with Requirements (PCP-R). This new variation considers the client’s
preferred software requirements as the features’ choice criteria. We also present a
linear model for this problem along with experimental tests using instances gene-
rated inspired on the SPLOT repository. The results shows the formulation solves
optimally all instances’ groups in less than 0.1 seconds and, about 36% of the tes-
ted groups of instances, have 50% of the most preferred requirements as part of its
solution.

Keywords: Software Product Line. Product Configuration Problem. Feature
Model. Optimization. Mathematical Model.
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1 INTRODUÇÃO GERAL

O Problema de Configuração de Produto (ou Product Configuration Pro-

blem - PCP) é um problema de otimização que visa escolher a melhor combinação

de elementos em um modelo de características (feature model) de uma Linha de

Produto de Software. Tal modelo é comumente representando através de uma

árvore, onde os nós representam as features e as arestas suas relações. Para a

solução do PCP, o trabalho de (PEREIRA et al., 2017) considera a satisfação do

cliente em relação à feature como critério de escolha. Neste trabalho, apresenta-se

o Problema de Configuração de Produto com Requisitos (PCP-R), que considera

a preferência do cliente em relação aos requisitos de software como o critério de

escolha. Essa nova abordagem traz como maior vantagem uma facilitação para o

cliente, já que este passará a avaliar os requisitos de software que melhor atendem

suas necessidades e não as features que, muitas vezes, não preenchem um requisito

por completo.

Foi considerado que cada feature implementa, parcial ou integralmente,

um ou mais requisitos e a escolha das features é limitada pelo orçamento do usuá-

rio, estabelecendo restrições do tipo mochila (GALLO; SIMEONE, 1989). Além

disso, as features selecionadas devem respeitar: (i) as relações (XOR ou OR) com

suas features pais; (ii) restrições lógicas entre items de ramos distintos da árvore

do modelo de features; (iii) integralidade da escolha de requisitos, ou seja, um

requisito não pode ser parcialmente atendido. Ao que consta, este é o primeiro tra-

balho que faz essa consideração. O objetivo dessa pesquisa é responder a seguinte

pergunta: "existe um modelo matemático inteiro misto para o PCP-R, que possa

ser resolvido através de um solver de maneira eficiente?".

A formulação proposta maximiza a combinação de features que imple-

mentam a satisfação de um cliente, baseado nos requisitos pelos quais ele tem

maior preferência, respeitando as demais características do problema.
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O título escolhido para este trabalho foi "PCP-R: A new variant of pro-

duct configuration in software product lines", seguindo as normas do periódico

Empirical Software Engineering, para o qual será submetido.
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1 Introduction

The growing need for larger and more complex software systems leads to better
support to reuse product parts with commons features Pohl et al. (2005).
Software Product Line (SPL) has been increasingly adopted to attend these
demands in the software industry Clements and Northrop (2001). As Thüm
et al. (2014) affirms, the SPL “is a family of software products that share
a common set of features”. Pereira et al. (2017) indicate that an SPL needs
to satisfy the specific necessities of a particular segment, besides having a
standard set of features that allow product configuration.

A feature can be an increment in functionality, a system property, func-
tional requirements, an architecture or design pattern Kang et al. (1990);
Bernardo et al. (2002); Batory (2005). Since a feature can represent different
characteristics of software, Software Product Line can be applied in different
contexts, such as mobile phones Figueiredo et al. (2008) and smart houses
Cetina et al. (2009).

Feature modeling has become the standard method to represent an SPL
in the research community since it can express the variability in product lines
Myllärniemi et al. (2016). All of the possibles products of the SPL are derived
from the feature model, and they need to satisfy its constraints Pereira et al.
(2017). Choosing the best product configuration of features is called Product
Configuration Problem (PCP) Asadi et al. (2014).

This study introduces the Product Configuration Problem with Require-
ments (PCP-R), a new variant of the PCP that considers the software re-
quirements as a solution’s quality criteria. This approach makes the process
of choosing a feature easier for clients since they will evaluate the software
requirements that best meet their necessities, not the features, which often
do not fulfill a requirement. Our goal is to answer the following question: “Is
there a mixed-integer mathematical formulation that can model the PRP-R
such that accurate solutions are found in practical computational times by a
commercial black-box solver?”.

The remainder of the document is structured as follows. Section 2 presents a
theoretical reference of feature models and mathematical formulations. Section
3 presents a brief literature review. Section 4 shows the mathematical model
for PCP-R. Section 5 presents the database and the numerical experiments
performed. In Section 6, we highlight the threats to validate this proposal.
Conclusions and future works are presented in Section 7.

2 Theorical Reference

This section presents the basis of the proposed methodology for the PCP-R. In
Section 2.1, we describe the main concepts concerning feature models. Then,
Section 2.2 defines some aspects related to linear and integer formulations of
combinatorial optimization problems.
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2.1 Feature Model

The SPL is generally represented by a feature model as a tree structure. Nodes
are the features, and their relationships are the parent-child edges Batory
(2005).

Features can be classified into two types: the mandatory and optional ones.
The mandatory features represent the common features among all products
of the product line, while optional features indicate the variability among the
products Pereira et al. (2017). It is possible to enable or disable SPL function-
ality according to different criteria, such as business and customer require-
ments. This characteristic is due to the optional features which allow variables
configurations of products since they define specific points of variation Pohl
et al. (2005); Goedicke et al. (2004). Furthermore, features can have functional
properties (FPs), and non-functional properties (NFPs) Pereira et al. (2017).

Each feature can be classified as a leaf feature or a non-leaf feature. The
leaf features have no children, whereas the non-leaf features have at least one
child Pereira et al. (2017), and are used as nodes for grouping its children. The
grouping nodes can be classified as one or zero of two kinds of groups: exclusive
alternative (XOR) and nonexclusive alternative (OR), where XOR∩OR = ∅.
At least one of the children from the OR group must be selected, whereas the
XOR one states that exactly one of them must be chosen Pereira et al. (2017);
Soltani et al. (2012). Furthermore, a group may not be classified, making it
possible to select zero, one, or more features.

Some features have composition rules that cannot be represented in the
feature tree. These characteristics define dependencies between them Pereira
et al. (2018). These rules are called cross-tree constraints, and are logical ex-
pressions composed by binary operators such as ∧ (conjunction), ∨ (disjunc-
tion),→ (implication),↔ (biconditional), and the unary operator ¬ (negation)
Pereira et al. (2017). These operators are used together with boolean variables
that represent whether a feature was chosen or not.

Figure 1 is an example of a feature model. In this case, the feature Speaker
is mandatory. Sound, Illumination and Camera are optional features. Fire,
Flood and Invasion belongs to an alternative group (OR-group), while Man-
nual and Automatic belongs to an exclusive alternative group (XOR-group).
The cross-tree constraint Camera→ Sound∧Illumination makes necessarily
choose Sound and Illumination if Camera is chosen. The cross-tree constraint
Security → Camera makes necessarily chosen Camera if Security is chosen.

As defined by Soltani et al. (2012), a feature model FM can be represented
as a sextuple, such that, FM = (F,O,M,OR,XOR,C), where:

– F is the set of features;
– O is the set of optional parent-child relationships (O ⊆ F × F );
– M is the set of mandatory parent-child relationships (M ⊆ F × F );
– OR is the set that represent same parents children into alternative groups

(OR ⊆ F × P (F ), where P (F ) is the set of the features which are parents
of other features);
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Fig. 1 Example of a feature model. Based on Smart-home made by Pereira et al. (2017),
which was adapted from Cetina et al. (2009).

– XOR is the set that represent same parents children into exclusive alter-
native groups (XOR ⊆ F × P (F ));

– C is a set of cross-tree constraints.

Finding the best product configuration is a difficult problem since we have
two difficult subproblems. First, we have the boolean satisfiability problem
(SAT), related to cross-tree constraints. Moreover, there are binary knapsack
inequalities, due to the incurred costs of the implementation of features and
the limited budget Gallo and Simeone (1989); Cormen et al. (2009). These
characteristics make the PCP an NP-hard problem Pereira et al. (2017).

2.2 Linear Programming

Linear programming (LP) is a technique to solve optimization problems with
linear functions and linear constraints Bazaraa et al. (2011). We define b ∈ Rm
and c ∈ Rn as vectors of constants, and A ∈ Rm×n as a full row rank m
coefficient matrix. Let x ∈ Rn be a vector of variables. A linear problem can
be written as:

min(or max)f(x) = cTx (1)

subject to:
Ax⊕ b (2)

x ∈ Rn (3)

where Ax⊕ b is a set of linear constraints, ⊕ ∈ {≤,≥,=}, and x ∈ Rn define
the domain of variables. The standard formulation of an LP model considers
⊕ = {=}, and x ∈ R+.
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A feasible solution for an optimization problem is a combination of values
for all the variables, satisfying the constraints. A solution is optimal if there
is no feasible solution with better objective value. An optimization problem
can have a single optimal solution, multiple optimal solutions, infinite optimal
solutions, or even the model can be infeasible Bazaraa et al. (2011).

George B. Dantzig proposed the “Simplex Method” which can optimally
solve linear programs Bazaraa et al. (2011). However, finding the best solution
for a problem may demand too much time since some problems have a large
number of possible solutions. Even so, linear modeling is a valuable resource
and can solve a variability of problems optimally.

The PCP-R formulation Section (4.2) has a set of binary variables. In this
case, the solving strategy needs to include Integer Programming techniques,
such as Branch & Bound based algorithms, Cutting Planes, and Column Gen-
eration. For more detailed examples of problems that can be solved via Linear
and Integer Programming, we refer the book of Bazaraa et al. (2011); Wolsey
(1998).

3 Related Works

There are many approaches proposed in the literature to solve the PCP Ochoa
et al. (2017) with automatic methods. Bagheri et al. (2010) applied a variant
of propositional logic along with fuzzy logic to represent and solve PCP with
qualitative NFP. The proposed approach proved to be efficient for two feature
models with up 290 features. Henard et al. (2015) proposed a search-based
SPL feature selection algorithm to address PCP in larger search spaces. Their
approach took approximately half an hour for feature models with up to 6888
features in their computational experiments.

Junior and Costa (2016) introduced a plug-in for the IDE Eclipse platform
to help the management of SPL. The proposed plug-in allows CRUD oper-
ations in a feature model. Further, it can generate different combinations of
products, limited by a maximum budget.

Xiang et al. (2018) proposed the SATVaEA, a combination of a multi-
objective evolutionary algorithm called VaEA Xiang et al. (2016) with two
SAT solvers. The algorithm was tested in 21 feature models with up 62.482
features. SATVaEA returned valid products for almost all feature models and
needed only a few minutes for instances with up 10000 features.

Pereira et al. (2017) introduced a preprocessing algorithm to remove un-
feasible feature combinations. The authors also proposed a backtracking algo-
rithm and a biased random-key genetic algorithm (BRKGA) Gonçalves and
Resende (2011) with a greedy heuristic for the constructive phase. The algo-
rithms are tested in artificial and classical feature models from the literature.
The performance of backtracking showed more efficient when the preprocess-
ing algorithm is executed. The BRKGA constructive heuristic alone presented
competitive results compared to the backtracking algorithm, but with shorter
execution time. Further, BRKGA outperformed the backtracking algorithm in
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all but two groups of instances. A desirable decision aid tool for SPL prod-
ucts must run in a few seconds. Thus, the authors concluded that the greedy
heuristic is the most appropriate choice in their context.

Although PCP includes the customer features preferences, as far as its
known, no work considers the software requirements as part of quality crite-
ria. This work differs from the previous ones due to the addition of software
requirements as the feature choosing criteria, the PCP-R, instead of the client
satisfaction with a feature. Also this work propose a mixed-integer formulation
for it.

4 Methodology

This section presents the Product Configuration Problem with Requirements
(PCP-R) through a set of notations and definitions. In the following, we in-
troduce a mathematical model to solve this problem.

4.1 Formal definitions

Let T = (V,A) be a feature tree, where V is the set of nodes (features) and A
is the set of edges such that (i, j) means that feature j is selected if, and only
if, task i is also selected. We define M ⊆ V and O ⊂ V as a set of mandatory
and optional features, respectively, such that M ∩ O = ∅, M ∪ O = V . Take
L ⊂ V as a set of leaves of T . Each feature v ∈ V has a cost lv. In this paper,
we establish that only leaves are concrete features. Therefore, the inner nodes
do not have real implementation cost since they are abstract features, that is,
lv = 0, ∀v ∈ V \L. A customer budget of B limits the choice of features.

Consider P as a set of features that have at least one child, and Dp ∈ D
as the set of children for p ∈ P . A feature can belong to an alternative group
(OR) or an exclusive alternative group (XOR). ORP is the set of parents from
groups OR. For all p ∈ ORP , there is a set ORCp containing all the children
of p. We also defined the sets XORP and XORCp with the same rationale.
The union of all ORCp, for each p ∈ ORP , gives the set ORC, and the union
of all XORCp, for each p ∈ XORP , provides the set XORC. Since the tree
T represents a feature model, we defined the root as γ ∈ V .

The main difference between PCP and PCP-R is the objective: in PCP,
features are selected based on customer satisfaction with it. On the other hand,
in PCP-R, features are chosen based on the customer’s preferred requirements.
The set of requirements R are divided in weighted groups such that the group
Wi ⊆ W is the ith preferred group, and its elements have a weight wi, where
w1 > w2 > ... > w|W |. If the requirement r ∈ R has a preference weight wi,
then r ∈ Wi and r has a higher preference than all the requirements that

belong to Wj , with j > i. Note that
|W |⋃
i=1

Wi = R and
|W |⋂
i=1

Wi = ∅.
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Fig. 2 Example of a feature model. Based on Smart-home made by Pereira et al. (2017),
which was adapted from Cetina et al. (2009).

Each requirement r ∈ R is implemented by a set of features Vr ⊆ V . For
each ṽ ∈ Vr, we denote αṽ as the percentage of implementation of requirement
r by ṽ, where

∑
ṽ αṽ = 1. We highlight that a requirement r ∈ R must

preserve its atomic nature. Thus, the selected features must implement their
corresponding requirements completely.

Let C be a set of cross-tree constraints C. We state that ci ∈ C is a p→ q
formula, where p and q are logical operations composed by ∧ , ∨ or ¬, such
that the allowed number of boolean variables in p and q are 1 or 2.

Consider the following software functional requirements (FR):

– FR1: The lights must be automatically turned off in case of fire
– FR2: The lights must be automatically turned off in case of flood
– FR3: Invasions must be recorded in video (with automatic illumination)
– FR4: An alarm must be sounded in case of invasion
– FR5: The lights can be manually turned off in case of fire
– FR6: The lights can be manually turned off in case of flood
– FR7: Invasions must be recorded in video (with manual illumination)

Figure 2 is a variation of Figure 1 to exemplify the PCP-R with the FRs
listed above. The feature model follows the previous specifications, which
means only leaves are concrete and can implement a requirement. It’s im-
possible to choose Manual and Automatic illumination in the same product
due to the XOR grouping, meaning that there will be no product which imple-
ments the requirements FR1, FR2, FR3 and FR5, FR6, FR7. The best product
configuration will depend on the input budget and the client’s preference for
the requirements.
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4.2 Mathematical modeling

The mathematical modeling of the PCP-R is composed of the following set of
variables:

xv ∈ {0, 1} equal to one only if feature v ∈ V is selected;
gr ∈ {0, 1} equal to one only if the solution implements all features with

requirement r;
ki ∈ Z+ number of requirements of weight wi selected.

The PCP-R formulation reads:

max f(x) =

|W |∑

i=1

wiki (4)

subject to: ∑

v∈V
lvxv ≤ B (5)

xγ = 1 (6)

xc ≤ xp, ∀p ∈ P , ∀c ∈ Dp | c ∈ O (7)

xc = xp, ∀p ∈ P , ∀c ∈ Dp | c ∈M (8)
∑

c ∈XORCp

xc = xp, ∀p ∈ XORP (9)

∑

c ∈ORCp

xc ≥ xp, ∀p ∈ ORP (10)

gr ≤

∑
v ∈ Vr

xv

| Vr |
, ∀r ∈ R (11)

ki =
∑

r∈Wi

gr, ∀i ∈W (12)

(Cross-tree constraints) (13)

xv ∈ {0, 1}, ∀v ∈ V (14)

ki ∈ Z+, i = 1, 2, ..., |W | (15)

gr ∈ {0, 1}, ∀r ∈ R. (16)

The objective function (4) maximizes the weighted sum of the selected
requirements, taking into account that the higher the weight, the more prefer-
able the requirement. Constraint (5) establlish the choice of features limited
by the budget B, while Constraint (6) forces the root feature to be chosen.
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Constraint (7) indicate that an optional feature can only be chosen if its
parent is selected. Similarly, Constraints (8) guarantee that a mandatory fea-
ture must be chosen if its parent is chosen. Constraints (9) state that at most,
one child is picked in an XOR group. On the other hand, Constraints (10)
ensure that at least one child is selected from OR groups.

Constraints (11) define an auxiliary variable gr, while Constraints (12)
count the number of selected requirements from each weighted group. Con-
straints (13) represent linearized logic cross-tree, explained with details in the
sequence. Finally, Constraints (14), (15) and (16) estabilish the domain of
variables.

In this study, we work with a limited number of cross-tree constraints. To
linearize them, it is possible to deal with each case separately. Table 1 shows
all the possibilities of cross-tree constraints and its equivalent linear form.
Then, for each c ∈ C, we create one constraint according to the Table 1. Since
the negation (¬) operator can be represented as 1 − a, where a is a boolean
variable, it can be also represented with the same rules. Further, according to
De Morgan Theorem, ¬(a ∨ b) and ¬(a ∧ b) are the same as ¬a ∧ ¬b and
¬a ∨ ¬b, respectively, where a and b are boolean variables. Therefore, it is
possible to represent the negation of disjunctions and conjunctions with the
constraints presented in Table 1.

Table 1 Possible cross-tree constraints rules, and the equivalent model constraint, where
a, b, c, d ∈ {0, 1}.

Cross-tree constraint Linear constraint
a→ c c− a ≥ 0
a→ c ∨ d c+ d− a ≥ 0
a→ c ∧ d c+ d− 2a ≥ 0
a ∨ b→ c a+ b− 2c ≤ 0
a ∨ b→ c ∨ d a+ b− 2(c+ d) ≤ 0

a ∨ b→ c ∧ d
a+ b− 2c ≤ 0
a+ b− 2d ≤ 0

a ∧ b→ c a+ b− c ≤ 1
a ∧ b→ c ∨ d a+ b− (c+ d) ≤ 1

a ∧ b→ c ∧ d
a+ b− c ≤ 1
a+ b− d ≤ 1

5 Results and Discussion

In this section, we evaluate the quality of the solutions obtained by solving the
proposed PCP-R formulation. Section 5.1 presents the characteristics of the
database adopted in the computational experiment phase. Section 5.2 shows
the results regarding different quality criteria.
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5.1 Test instances

The literature related to PCP variants does not provide a set of instances
concerning the PCP-R. For that reason, we introduce a benchmark for this
problem, inspired in examples present int the SPLOT repository Mendonca
et al. (2009). The instances were collected using the code present in Cruz
(2019). In total, there are 1, 145 instances, but 8 of them were not discarded
since they presented characteristics such as duplicate feature names. The pa-
rameters adopted to determine the range of values randomly generated were
based on the instance generation scheme described in Pereira et al. (2017).

We converted all the cross-tree constraints from the conjunctive normal
form (CNF) clause to the pattern described in 4.2. The converted constraints
with no match with the previous definitions were excluded from its corre-
sponding instance. The costs of the leaves were randomly generated according
to U [0, 100], U [0, 1000], and U [0, 10000], for instances with up 100, 1000, and
greater than 1000 features, respectively.

We calculate a lower bound of the number of requirements, r, such that all
leaves can implement at least 10% of a single requirement. Then, the number
of requirements was given by r plus a random integer in U [0, 10], U [0, 20] ,
and U [0, 30], for instances with up 100, 1000, and greater than 1000 features,
respectively.

We divided the number of requirements into the following number of weighted
groups: (i) |W | = 3, for instances with up 100 features; (ii) |W | = 7, for in-
stances with up 1000 features; (iii) |W | = 10, for instances with number of
features greater than 1000. We set |R| = |W | whenever |R| < |W |, during the
generation phase. The weights of the groups ranged from [10, 20, ... , |W | ∗10].

The generated instances are available in Cruz et al. (2019). The model was
tested in an Intel core i7 - 7th generation and 16GB computer, codified in
python3 using the Gurobi Solver 8.1.1 with 6 threads.

5.2 Results and discussion

We grouped the generated instances by groups with up 20, 50, 100, 200, 500
and 1000 features. Table 2 shows some of its characteristics. The first column
is the maximum number of features (|V |max); the second is the number of
instances in the group (Inst); the third is the average number of cross-tree
constraints of the instances (C); the fourth one is the average number of re-
quirements (R); finally, Imp is the number of infeasible instances according to
two criteria, described below:
1. If a requirement r is implemented by two features which are descendants

of the same feature v ∈ XORP ;
2. If a requirement r is implemented by a mandatory feature v with a manda-

tory sibling u, and u is a child of a feature p ∈ XORP .
For each instance, the model was executed with the following budgets: 100,

200, 500, 1000, 2000, 5000, 10000, 20000 and 50000. Table 3 shows the results
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Table 2 Characteristics of the generated instances.

|V |max Inst C R Imp (%)
20 480 1.192 6.373 31.14
50 456 2.814 7.605 35.22
100 168 10.834 9.315 42.41
200 24 11.042 19 36.61
500 8 69.75 30.25 20.45
1000 1 0 52 9.61

obtained after the tests. The new information in the columns are, from left to
right:

– B: the budget tested;
– Opt: the number of optimal solutions found;
– z: the number of optimal solutions with objective function value equal to

zero, which means the model could not choose any complete requirement.
Then, solutions are composed of abstract features and can be considered
infeasible. We allowed this situation to avoid the addition of constraints
for the non-leave features;

– Inf : the number of instances with infeasible solutions.

The results of groups that presented small deviations for different budgets
were placed in the same line. For instance, see the fourth line of the Table
5, where the group with up 20 features showed no difference for the input of
1000, 2000, 5000, 10000, 20000 and 50000 of budget.

According to the experiments, the number of optimal solutions found in-
creases as the input budget increases. This is somehow expected since we give
more slack to knapsack constraints. On the other hand, the number of instances
reported in column z reduces as the budget increases due to the possibility
of choosing more concrete features, resulting in implemented requirements.
The number of infeasible solutions also reduce with larger values of budget,
explained by the same reason we observed with z values.

Table 4 includes the other two quality criteria to compare the results:

– G ↓: the average percentage of features that were chosen over the least half
preferred groups. Note that if G ↓= 100%, all features of these groups were
chosen;

– G ↑: the average percentage of possibles features that were chosen over the
most preferred group. Note that if G ↑= 100%, all features of the group
W1 were selected.

We can see that part of the requirements were impossible to achieve due to
the random generation. Moreover, about 36% of the groups tested have 50%
of the high priority requirements, and only a single group (V = 20 and B >
1000) obtained more than 50% of the requirements from the worst half weight
classes.

Table 5 reports the effectiveness of the PCP-R model solved by Gurobi. In
this set of results, we present:
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Table 3 Number of optimal and infeasible solutions found.

|V |max B Opt z Inf
20 100 301 264 179
20 200 398 202 82
20 500 470 80 10

20
[1000,2000,
5000,10000,
20000,50000]

476 74 4

50 100 235 227 221
50 200 309 240 147
50 500 399 94 57
50 1000 438 67 18
50 2000 444 62 12

50 [5000,10000,
20000,50000] 444 62 12

100 100 115 115 53
100 200 125 108 43
100 500 148 54 20
100 1000 159 39 9
100 2000 164 35 4

100 [5000,10000,
20000,50000] 164 35 4

200 [100,200,500] 11 11 13
200 1000 12 12 12
200 2000 14 12 10
200 5000 17 6 7
200 10000 22 7 2
200 20000 22 4 2
200 50000 22 4 2

500 [100,200,
500,1000] 5 5 3

500 2000 6 6 2
500 5000 7 4 1
500 10000 8 1 0
500 20000 8 0 0
500 50000 8 0 0

1000 [100,200,500,
1000,5000] 0 0 1

1000 10000 1 0 0
1000 20000 1 0 0
1000 50000 1 0 0

– t(s): the average computational time spent by Gurobi to solve the model;
– f∗(x): the average of objective function;
– #Nodes: the average number of nodes explored in the Branch & Bound

based algorithm by Gurobi;
– #Splx: the average number of Simplex iterations performed by Gurobi.

The mathematical model performed accurately for the test problems since
all instances were solved to optimality. The computational time was low, with
an average of less than 0.1 seconds, in all budget scenarios. We also highlight
the reduced number of nodes explored in the Branch & Bound based algorithm,
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Table 4 Average percentages of best and worst chosen requirements and impossibles re-
quirements.

|V |max B G ↓ (%) G ↑ (%)
20 100 2.3 5.9
20 200 12.2 26
20 500 43.3 75.1
20 [1000,2000, 5000, 10000, 20000,50000] 51.6 80.8
50 100 0.2 2.4
50 200 2.6 8.8
50 500 15.9 49.5
50 1000 37.1 74.8
50 2000 45.4 80
50 [5000,10000, 20000,50000] 45.6 80.1
100 100 0 0
100 200 1 3.5
100 500 4.2 42.5
100 100 12.8 58.8
100 2000 26.8 70
100 [5000,10000, 20000,50000] 29.3 71
200 [100,200,500] 0 0
200 1000 0 0
200 2000 0 8.3
200 5000 1.5 52.4
200 10000 4.7 32.9
200 20000 7.4 43
200 50000 18.7 50.4
500 [100,200, 500,1000] 0 0
500 2000 0 0
500 5000 0.5 4.8
500 10000 0.6 17.1
500 20000 4.5 38.3
500 50000 12.1 44.6
1000 [100,200,500, 1000,5000] - -
1000 10000 0 16.7
1000 20000 0 16.7
1000 50000 10 0

as well as the number of simplex iterations. Possible reasons that can explain
these results are:

1. the limitations constraints facilitated the solution of the instances;
2. the atomicity of a requirement (11) constrained the solutions’ search space;
3. the high number of impossible requirements created some instances of easy-

solving;
4. having only the leaves as concrete features reduced the difficulty of finding

the optimal solution.

6 Threats to validity

Some characteristics of this work may threaten its validity. As follows, we
enumerate them.



14 Arthur Henrique Sousa Cruz et al.

Table 5 Results of the PCP-R model according to the execution of Goro

|V |max B t(s) f ∗ (x) #Nodes #Splx
20 100 0.003 4.319 0.000 0.000
20 200 0.003 18.794 0.071 0.510
20 500 0.003 64.170 0.0896 1.221

20
[1000,2000,
5000,10000,
20000,50000]

0.003 71.723 0.000 0.015

50 100 0.004 0.766 0.000 0.000
50 200 0.004 5.405 0.0329 0.213
50 500 0.005 34.236 0.421 6.956
50 1000 0.004 65.434 0.336 4.999
50 2000 0.003 76.351 0.011 0.281

50 [5000,10000,
20000,50000] 0.004 76.667 0.009 0.270

100 100 0.005 0.000 0.000 0.000
100 200 0.005 3.040 0.024 0.060
100 500 0.006 21.216 0.673 13.107
100 1000 0.007 40.000 1.512 24.649
100 2000 0.005 62.805 0.143 3.512

100 [5000,10000,
20000,50000] 0.005 66.463 0.030 0.506

200 [100,200,500] 0.007 0.000 0.000 0.000
200 1000 0.007 0.000 0.000 0.000
200 2000 0.007 8.571 0.0417 0.000
200 5000 0.009 45.882 0.333 12.333
200 10000 0.012 71.818 1.833 66.125
200 20000 0.013 122.727 5.917 112.500
200 50000 0.009 190.909 0.417 26.167

500 [100,200,
500,1000] 0.014 0.000 0.000 0.000

500 2000 0.015 0.000 0.000 0.000
500 5000 0.017 22.857 0.125 1.375
500 10000 0.028 75.000 3.500 135.625
500 20000 0.035 166.250 1.000 293.125
500 50000 0.040 243.750 5.625 333.250

1000 [100,200,500,
1000,5000] 0.020 - 0.000 0.000

1000 10000 0.030 70.000 0.000 5.000
1000 20000 0.041 120.000 1.000 273.000
1000 50000 0.037 140.000 1.000 255.000

– Cross-tree constraints: the limitations added to the cross-tree constraints
may have a considerable influence on the results obtained by the model.
Regarding that, we have at most four binary variables in each clause, the
SAT problem could be easily solved. Thus, the time spent to find feasible
solutions was reduced.

– Abstract features: different from PCP, the non-leaves features can not im-
plement any requirements in PCP-R. Thus, the number of possible re-
quirements combinations could be reduced, which decreases the time to
find optimal solutions.
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– Test instances: the impossible combination of requirements generated by
the random distribution might facilitate the search for the optimal solution.
Furthermore, the majority of the instances that are available in SPLOT
Mendonca et al. (2009) have less than 100 features, making it difficult to
prove the scalability of the proposed mathematical formulation.

7 Conclusions and future avenues

The product configuration problem (PCP) is a common optimization problem
in SPL engineering. It is difficult to choose the best configuration of an SPL
among all the possibles configurations that can be represented as a feature
model.

The PCP considers customer satisfaction as the solution quality criteria.
In this work, we presented a variation for the Product Configuration Prob-
lem, which includes the client’s preferred requirements as the main criteria for
choosing a feature, since it’s possible to add an implementation value for a
feature.

The PCP-R was formally and mathematically described. To answer the
question “Is there a mixed-integer mathematical formulation that can model
the PRP-R such that accurate solutions are found in practical computational
times by a commercial black-box solver?”, we propose a mixed-integer model
with some limitations concerning cross-tree constraints. According to the tests,
the implemented model could optimally solve a set of instances created based
on the SPLOT repository Mendonca et al. (2009). For all the instances, the
model execution time was less than one second, and the results show that
the most preferred requirements were prioritized compared with the least pre-
ferred. Finally, we evaluate criteria related to the results obtained by Gurobi.
The goal is to understand better the model behavior to explain the execution
time and the possible threats of the validity of this work.

We intend to linearize more general cross-tree constraints, to remove the
cross-tree pattern limitation. For future avenues of this works, it is possible
to reformulate the model to accept leaves and non-leaves as concrete features.
Also, more complex instances can be tested to verify the efficiency of the
proposed formulation.
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